Coming soon: A supercomputer for the rest of us

Researchers in America develop prototype desktop supercomputer

What if your desktop computer could run 100 times faster than a PC and were simple enough for a high school student to program?

That's not an idle question. Researchers at the University of Maryland have built a prototype of a "desktop supercomputer" that can do just that.

The new computer is at least three years from reaching commercial markets, but it could have a big effect in industries that process large loads of data. They include the pharmaceutical, aerospace, military and entertainment industries, for applications such as drug modeling, computer-aided design and digital content creation.

The Explicit Multi-Threading (XMT) computer combines the decades-old philosophy of using parallel computing algorithms with the huge number of transistors in modern processors.

The machine uses three field-programmable gate array chips from Xilinx Inc. to represent a network of 64 ARM proc­essors that control dozens of threads of simultaneous computation, says Uzi Vishkin, a professor at the A. James Clark School of Engineering who built the machine with his graduate students.

The team is now trying to shrink the prototype, a license-plate-size board running at 75 MHz, down to a fingernail-size version running between 1 GHz and 2 GHz.

Team members took the first step toward that goal this summer by commissioning IBM to manufacture a CMOS silicon application-specific integrated circuit (ASIC) with an on-chip data interconnect network. The venture is funded with a grant from the U.S. Department of Defense, Vishkin says.

A Kid Could Do It

Even if they succeed in building a smaller version of the prototype, the researchers will face the challenge of teaching programmers how to write software for a multi­threaded system.

Many commercial software companies are already puzzling over a similar problem today as they try to adapt to the latest dual- and quad-core processors from Intel and Advanced Micro Devices.

However, Vishkin says his system will be easier to program than applications for commercial multicore chips because the XMT algorithms appear to the operating system to be a single thread. "If you build it in a way that people cannot program it, it remains in the ivory tower of theory," he says.

To prove his point, before the end of this year, Vishkin is planning to teach a class of high school students how to program the XMT using a version of the C programming language. He will teach college students to program the prototype in the first quarter of 2008.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Ben Ames

IDG News Service
Show Comments

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Cate Bacon

Aruba Instant On AP11D

The strength of the Aruba Instant On AP11D is that the design and feature set support the modern, flexible, and mobile way of working.

Dr Prabigya Shiwakoti

Aruba Instant On AP11D

Aruba backs the AP11D up with a two-year warranty and 24/7 phone support.

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Featured Content

Product Launch Showcase

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?